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ABSTRACT:

The aim of this paper is to study satyeamical aspects of the shift mapn thebi-sided full

m-shiftx, =3 . We mainly prove that it iDevaney chaoti¢DevQ), Auslander-Yorke chaotiand

[m]
generically ¢ -chaotic. We also establish tha# has chaotic as well asmodified weakly chaotic
dependence on initial conditiongurther we have derived theeta functionfor this map and

calculated thentropyfor thefull m-shift
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1. INTRODUCTION::

Shifts, particularlghifts of finite typeor Markov shifts[1], as dynamical systems, have some
additional advantages over other general dynansigstems. It is seen that a Markov shift has very
close links with graphs, transition matrix and &nalgebra and also with the probability matrix. [1]
Another important aspect is that the study of sltyftamical systems facilitates us in two waysit(i)
gives proper knowledge about their individual dyimarand (ii) it provides good information about
the dynamical systems represented by them or tgmallly conjugate [1, 2] to them. Finite type shift
are sub-shift spaces of the full shifts and hemndeecomes an ardent need to know the dynamical
nature of these full shifts to be able to analyse dynamical properties of other Markov shifts. For
this reason we first give below a description df &hifts, discuss the notions related to them ai w
as to other general shifts and mention some impbffiazcts which will be useful in our future
implementations. In this paper we have establistoede dynamical aspects of the shift maf3, 12]
on the fullm-shift. Devaney chaofDevQ [4, 5, 6],Auslander-Yorke chad8] andgeneric s -chaos
[8, 9] of this map have been proved hethaoticas well asnodified weakly chaotic dependence on
initial conditions[9] have also been established for this map. Intaddto these, we have derived the
zeta functiorj1] of this Markov chain[1] and calculated the entropy of the foiishift.
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72 Tarini Kumar Dutta & Anandaram Burhagohain

2. PRELIMINARY DISCUSSIONS AND BASIC RESULTS:

Definition 2.1: Li-Yorke Pairs [8, 10, 11]: A pair(y,z)dX?in a topological dynamical system
(X, f)is called aLi-Yorkepair with modulug > 0if we have (iJim Supd(f"(y), f"(z)) = d and also

n- oo

(i1) lim Inf d(f"(y), f"(2)) = 0.

n- oo

Definition 2.2: Weakly and modified weakly chaotic dependence on initial conditions [9]:
A dynamical system(X, f) is called weakly (resp. modified weakly) chaotepdndence on initial

conditions if for anw 0 X and every neighbourhood x) of X, there are pointg, z0O X [y # X,z # X

in modified weakly case] such théy,z) 0 X?is aLi-Yorkepair.

Definition 2.3: Generically s -Chaotic maps [8, 9]: A continuous mapf : X - X on a compact
metric spac& is generically d -chaoticif LY (f,d), the set of all the Li-Yorke pairs i, is residual
inXx?2.

Proposition 2.1[4, 5, 8]: A topological dynamical system f : X — X istopologically transitiveif for
every pair of non-empty open setsU and Vof X, there exists a positive integer n[OJN such that

fPUNV 2.

Proposition 2.2 [8]:1f f : X - X isa continuous topologically mixing map on a compact metric

space X, then f isalso topologically weak mixing.

Proposition 2.3 [8]:If a continuous map f : X — X on a compact metric spaceX is topologically

weak mixing, then it isgenerically o -chaotic on X with d = diam(X).
2.1: Full Shifts, Shift Spaces and Shifts of finitdype

The setA? of all two-sided sequences of symbols, also cdéétérs from a finite setA4, called
thealphabet is thebi-sided full A-shift[1, 7]or simply thefull “A-shift Generally A contains typical
symbols like 0, 1, 2, 3...or a, b, ¢, d... etc. Thi $hift over the alphabefd= {0, 1, 2, ...,m-1}is

termed as thdull m-shiftand it is generally denoted By or X A typical pointx in a shift is

[m]

denoted as

X = i XX, X (X X X Xs.......Where x° [ alphabet

Impact Factor (JCC): 2.6305 NAAS Ragr8.19



Chaotic Aspects of the Shift Map on the Bi-Sided AUM-Shift 73

A word or ablock of length kor simply ak-blockover A is a finite sequence of symbols from the
alphabet A of the typex; x, x, ...x, . For i,j(>i)0z, x; denotes the blockx.,x.,,...x; of
coordinates of the point from thei-th position to thg-th position The blockx_, ,; = X, X -+ X,
k 0N, is generally known as the centfak+1)-block of x and the role of the central blocks of points

are very essential in studying the dynamics offtifieshifts as well as other shift spacesu/fvbe two

blocks of letters overd, thenuv represents the block of lengfh| +|v obtained by concatenating the

letters inv at the tail ofu. If ‘F is a collection of some blocks ovét, then X represents the subset of
all the sequences i1? which do not include any block iff. /F in this context is known as the
collection offorbidden blocksShifts or shift spaces [1, 7, 1%]are subsets of a full shifi” such that
X:Xf for some collection of forbidden blocksShifts of finite type or Markov shifts are shift

spaces which can be described by a finite collacffoof forbidden blocks. The full shifts and the
Golden Mean shift are two examples of shifts of ttyipe. Finite type shifts are call&d-step [1]

when they can be described by a collection of ttdbn blocks all having length equal td+1).
Bn(X) denotes the set of all theblocks which occur in points in the shift spaXecalledallowed

blocksin X. The collectionB(X) :U B,(X) of all allowed blocks irX is called thdanguage of X. A

n=1
shift space isrreducible [1] if for every pair of blocksu,v B(X) there exists a block[1B(X) such
thatuwvO B(X) .

2.2 Graphs, Adjacency Matrices and Edge Shifts

The correspondence between a graph andjasency matrix is well known. For a definite order

of listing, them vertices of a graph give a unique adjacency matrx A ] a square matrix with

mxm?

non-negative integers such t#gtis the number of edges from the verte the vertex). Though a

different listing order of the vertices may giveeito a different adjacency matBx it is not different
at all in the sense th# and B are always similar. More precisely, we always haveermutation
matrix P such thaB = PAF . Since similar matrices have the sahoedan canonical form [13], in a
certain sense they can be treated as same. Orthttel@and, a square matrix of ordarwith non-
negative integer entries gives a grdphvith a vertex set afn elements. For different labelling of the
vertices give isomorphic graphs having identicalparties. If G denotes the formation of graph of
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74 Tarini Kumar Dutta & Anandaram Burhagohain

the square matriA with non-negative integer entries ang Aenotes the formation of adjacency

matrix of the grapl@ for a certain labelling, then, we have the follogvimportant facts:
(i) A=A (Ga) and (ilGLCG(Ag) [1].

These are the most useful correspondences betwagmsgand their adjacency matrices. These
correspondences indicate that we can use eithegrieh G or its adjacency matriXA for the
specification of the underlinedgraph, whichever is more convenient in the context.

For a graplG with edge seff and adjacency matrik, theedge shift [1] X¢or Xa is defined to be the

shift space over the alphah8t="7 such that

rxXc={e=(8), Ug)=i(e.,)},

wheret(e) is the terminal vertex of the edgandi(e.,) is the initial vertex of the edg®g. This is
the connection we have between graphs and shifsfdllowing propositions reveal this connection

more formally and explicitly.

Proposition: 2.4 [1]: If G is a graph with adjacency matrix A, then tlss@ciated edge shifisX Xais
a 1-step shift of finite type.

Proposition: 2.5 [1]: If G is a graph, then there is a unique sub-grapbfts such that H is essential
and X= Xu.

Proposition: 2.6 [1]: Let G be a graph with adjacency matrix A am& 0. Then,

(i) The number of paths of length m from | to[AY,, , the (I, J)-th entry of A

(i) The number of cycles of length m in G is T)(&he trace of A and this equals the number
of points in X% with period m.

Proposition 2.4 implies that every graph correspanghift of finite type while Proposition 2.5
expresses that not the whole graph is essenti@bistruct the associated shift, only the largest
essential sub-graph of the given graph is sufficilax this purpose. The implications of the
Proposition 2.6 will be more useful to derive thenber of periodic points of a shift space if we can

represent it by a graph.

Shifts of finite type attract more our attentionsedto their simplest representation using a finite
directed graph and hence questions about the dbgiteme the questions about their graphs or
equivalently the questions about the graphs’ adi@cenatrices which can be answered more easily

and perfectly by using basic results from linegeéla.
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2.3: Graph Representation of Shifts and Vertex Shifts

Every shift of finite type is not an edglaft [1]. Golden mean shift is a good exampleupport
of this fact. But any shift of finite type can becoded, using the higher block presentation, totmec
an edge shift. In fact, for an-step shiftX of finite type, there is a grah such tha ™ = X¢. Here

X ™1 s the image of the shift spaeunder ther+1)™ higher block codes, ., : X — (A™4)Z given
bY (Bt (X)) = Xiiemp » XO X, Where (A™)?is the full shift over the alphabgf™ =B .,(X), the
collection of all the allowedn¢+1)-blocks inX.

Using a transition matrix, a non-negative matristhweéntries either O or 1, one can obtain a shift of
finite type. The shift obtained in this way is knows avertex shiff1]. The formal definition of such

shifts has been given below:

Let B be a transition matrix of order<xm. Then it is the adjacency matrix of a graphsuch that

between any two vertices there exists at most dge.eThe vertex shift d is a shift space denoted

by )A(B = )A(G and is defined by
Xy = Xg ={x=(X),;; OA?: B, =10i0Z, A= {1234,.....n}}

Vertex shifts arel-step shifts of finite type. F)E)g,: Xewhere F ={ijj :B; =0,i, jA}. These shifts

are also calledbpological Markov chaingl, 14]. The topological Markov chain correspondinghe

transition matrixB is also denoted 1%, . We have the following proposition that shows tékations

among edge shifts, vertex shifts and shifts otditype:
Proposition: 2.7[1].

0] Up to a renaming of symbols, every 1-step shifinde type is same as the vertex shift.
(i) Up to a renaming of the symbols, every edge shitvertex shift.
(i)  If X is a 1-step shift of finite type, theli™s a 1-step shift of finite type, equivalently a

vertex shift. In fact, there is a graph G such &l = X and X™ = X . .

Though vertex shift is very simple to describe, eedbifts have been mostly preferred in most of the
applications due to economy of expression of ifg@hcy matrix. Further, in case of vertex shifts,

certain operations on matrices do not preserverbgerty of being 0-1 (transition) matrices.
2.4: The full m-shift as a topological dynamical systeniTDS) and cylinder sets
A topological dynamical systeffiDS] is a pair (X, f)whereX is a compact metric space
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[15] andf is a continuous transformation &h The fullm-shift = is a TDS under the metni;, and

transformationo on Z , defined as below:
Forp >landx=(X)._.., Y =(¥% )i~ U, the mapping,,: 3, x% - R defined by

p < if x#yandkON is greatestst. X 4 = %
d,(xy)=11 if x, 2V,

0 if x=y
is easily seen to be a metric kgy. From definition it is clear that two points k), are close to each
other if they admit in a large central block. Undleis metric is a compact metric space [1, 15].
Also, the shift transformatiom on the fullm-shift =_defined byo(X) =....X,X % [ XXX;....., i.e.0
shifts every letter inx one place to the left, is a continuous map [1aBf hence(Z o) is a

topological dynamical syste(fDS). The concept of open and closed sets playaryaessential role
in the study of metric spaces. In the full shifasgs we have sets, knowncgtinders which are both
open and closed at the same time. These cylindarscularly the class adymmetric cylinderand
admissible symmetric cylindens shift spaces, are very important in the studieshift spaces as
topological dynamical systems. Because these dasg/linders form bases for the shift spaces.
Therefore, we need the formal definition of thespartant terms.

If I,nON anda 0 {012,....... m-1}, —I<i<n, then acylinder C, (a,,a . ....... a,)is a

subset ofz  defined as:

(G C:URY: EI a,) ={x=(%)> 0%, :x =a,0-1<i<n}.
For nON,C_ (&, @ eeeeeee- a.)is called asymmetric cylinder. In case of aopological Markov
chain [9] Z, O X corresponding to a transition matrx a cylindeC_, (a,...,a,)is an admissible
cylinder if B,, =10-I<i<n and a cylindelC_, ,(a,,......&,) is an admissible symmetric cylinder
if B,,,,=10-I<i<n.
The following three well known propositions relateccylinder sets are more important and have

been extensively used in the proofs of some maaréms deduced by us.
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Proposition: 2.8 If p>2m-1then any non-empty open Befl X contains a symmetric cylinder
C..(@.....a,).

Proposition: 2.9 If p>2m-1then any non-empty open el X contains an admissible

symmetric cylindeC_, (a.

Proposition: 2.1Q If p>2m-1,then fore=1/p",C__ (X

SESTERENE

%) =B, (x1/ p") wherex= (x)=",

-n,n
contains the central blook_, , = X_.... X, By..... X,

2.18 Irreducible and Aperiodic Matrices:

Irreducibility and aperiodicity of matricese two more essential concepts in linear algalra

well as in dynamical systems. A transition mathxis said to beirreducible if for anyi, jON,
1<i,j<m, CnON (possibly dependent énj) such that(A"), >0. i.e. the (,j)"entry of A" is
positive.

On the other hand, a transition matrixageriodic if there existadN such that for any
1<i,j<m, (A"), >0. i.e. the matrixA” is positive. From the definitions of irreducibledaaperiodic

matrices it is clear than aperiodic matrix is always irreducible
3. The Main Results

Proposition: 3.1[1] If 0:%, - Z£,be a topological Markov chain corresponding to thansition

matrix A, then,

() Ais irreducible ifand only it : £, — X, is topologically transitive.

(i) If A'is aperiodic, theng : %, - % ,is topologically mixing.
Proof: In the proof of this proposition the following Lenanhave been extensively used.
Lemma [1]: If A" >0 for somenON , then for any integer > n we also have tha' >0.

Proof of the Lemma The concepts of graph of the transition ma#tikave been basically used in the

proof of this Lemma.

If A" >0for somenO N, then this means that for evejy 1< j < mwherem s the order of the

matrix A, there exists a positive integéy ON such tha#y ; =1. For, otherwise, ifA; =0for all

1< k < m, then the vertew, of the corresponding graph of the matxcannot be reached from any
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other vertex, . In this case, there cannot have any path of fekgteaching the vertex . This
contradicts our assumption thglf >0 (.- A" >0).

Now by induction we show that for argyn. The result is true for = n by our assumption.

Let it be true for some> n such thatA” >0and letl<i, j<m. Then, by our first remark, for every

i, there existsk; [N such tha#y ; =1. Further, for all the othet<k <m, we haveA; 20. So, we

clearly have that
=D AAZA A=A 1=A, 20 [ A >0 A >0
r=1

This proves thatA™ >0 and hence by induction the Lemma follows.
Proof of the proposition:

(i) Let us first assume that the matri is irreducible. We need to show that:>, - X,is
topologically transitive. To show this we establigtat for non-empty open set$,vV 0% ,, there

existsM [ONsuch that™ (U) NV # .

Fixo>2m-1. Then, by proposition 2.8, for the non-empty opets U,V 0%, there exist
symmetric cylindersC _, ,, (X_,.....%) OU andC_ ,,(y,.....y;) OV . Now we construct a point[1> ,
using the central blocks of these symmetric cylinde

Takei=x andj =y, . Then by irreducibility ofA, there existsnONsuch tha#’ >0. This
implies that there is a path of lengtlin Ga that connects the vertex to the vertex, . Let the digits

describing this path bez,z,........ .Z,,,z,Wherez, =x,,z =y, . Clearly, for every non-negative

n

integeri with 0<i<n-1, we haveA | =1.

Now, consider the pointJ X ,such that

zOUNo™ (V) = a"(U)NV # @. That is, the shift map:3, - %, is topologically transitive.
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Conversely, lev:2, - 2, be topologically transitive. We now show thats irreducible.
Let 1<i,j<mand take the cylinde®(i)={x0%,:x,=i}andC,(j)={y0Z,:y,=j}. Since,
cylinder sets are always open as well as closedwsacan takeC, (i) andC,(j) as open sets. Let us
denote them abl andV respectively. Then by transitivity of: ¥, - Z,, there exists[JN such that

g"U)NV zg.
Now, c"U)NVZp=UNoc"V)2p- 0zOUNT"(V)
< OzstzOU =C,(i) andzOo™"(V =Cy(}))
= Lzstzy=iandz, = ]
Thus we have got an elemepOU O X ,that describes a bi-infinite path on the graphoGA such

that z, =i,z, = jand this gives a path of lengthconnecting the vertex to v;. From this it follows

that for alli, j with 1<i, j < m, there exists1l]N such tha#)] >0.HenceA is irreducible.

(i) Let A be aperiodic. Then, there exist&1Nsuch thal" >0. We show thato:%, - % ,is
topologically mixing. i.e., for any pair of non-etgpopen setdJ,vV 0 %,, there existsM,ON such
thato" (U)NV # gfor allM >M,. In a similar reasoning as in part (i), bothV OZ,contains
symmetric cylindersC_, , (X,,.....%) OU andC_ ,(y,.....y,)) OV . LetM; =n+k+I|. IfM =M,
then M =m+k+lwithm=n. Also, by the above LemmA' >0and sA?, >0. Therefore, there

exists a path of lengtim from the vertexto the vertex,. So, as in part (i), we can construct a paint

of the form

Z= . X pooeen XXy (KK een X 22 e Ze Y e Y] e in =,such that zOU No™ (V)
and from this it immediately follows that™ (U)NV # ¢@. This is true for anyl >M,. Hence

o:Z, - Z,Iis topologically mixings
Theorem: 3.2 The shift map : 5 - % is topologically transitive as well as mixing
Proof :( i) Topological transitivity of o :

Let U andV be any two non-empty open setg in We show that for these two non-empty

open set$) andV, there exists a positive integesuch thas"(U)NV # ¢.
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Sinca&J andV are non-empty, so, we hawe= (x);~_, JU andy = (y;);-_, OV . Again, sinceJ
andV are open sets i@, so there are open baIde (x,r,) and de (y,r,)such thathp (x,r,p)0U
and de (y,r,)0V.

Fixo >2m-1. Now forr,,r, >0, we can find a positive integarsuch thap™ < min{r,,r,}.
Then clearlyB, (X, p")Ydu andB, (Y, p ")OV. Also, we have thaB, (x,07") =C_,,(Xpe-iX))
andde (v, 0" =C_ (Y-, - Therefore, all the points irde (x, o")ymust agree withx in the
(2n+1) -central block and all the points de (y, p ") must agree witly in the (2n+1) -central block.

We now consider a very typical oz =(z)~_, 0% such thag =x,0i =-n,...,.n and

Z,. =Y., 0i=12..2n+1. Then clearly the poirtagrees witlxin (2n+1)-central block and hence

zOC_, (X greenXy) = B, (x,p™"). Further ®*(z) agrees withy in(2n+1)-central block and so
0™ (D) OC 4o (Yopr¥a) = By, (V0.
Thus zOB, (x,0™") 00U, 0™ (0B, (y,p") OV = 0™ (2)0c™(U),0""(2) IV
= o™ (0™ U)NV
=S o™U)NVze
Hence the self-map :3_ - % _is topologically transitives

(i) oistopologically mixing : Let U andV be any two non-empty open sets in Here we need to

prove that for the non-empty open setsandV, there exists a positive integey, (0N such that
c"(U)NV #@,0On=n,n0ON . U andV being non-empty, we get=(x);._,, U andy = (y,)~_, OV..
Again, U andV being open, there are open de@p (x,r;) and de (y,r,)such thathp (x,r;) JU and
B, (y,r,) OV. Now forr,r, >0, we can find kON such thap™ <min{r,,r,}. Then clearly
By, (X, o) 00U andB, (y, 00OV,

Also, for a fixedo>2m-1, by proposition 2.10 we have th& (x, P7)=Ci (K seiX)

andde (y, p'k):C_k’k(y_k,....,yk). In this case, every point inp (x, p*)must agree withx in the
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(2k +1) -central block and every point idp (y, p*)must agree witly in the (2k +1) -central block.

We now construct a sequengae} points inx, with the help ok, y andk as follows:

Here, every,,i =2, is constructed by concatenating the wogds,, a,;;and ¥, ., whereay,
is the word of a fixed sequenae=(a )", chosen arbitrarily. Also, we note here that eweny>1,

agrees with the point at least in the(2k +1) -central block. Therefore, for evezyi =1, we have

2, 0C_, (X X) =By (x,07) DU

NOW, 0% (z) = ..c. X yeoeee X Ypereee Yo Vpeeeen Yoo OV @ND 07 () D0 (U)

— 0.2k+1(zl) Da.zkﬂ(u)ﬂv
= c* N U)NV % .

Also, g™ (z)OU,0% " ™) = oo. X oo % BBy By YooY Voo Yo OV, 00 2 2 ON

i=0
So,0*" M U)NV 2 g, foralli=2. Thusg"(U)NV # ¢, for alln=2k +i-1>n, =2k +1.
Hence, the shift map : 3 - 5 _is topologically mixinga

Remarks: We can alternatively give the proof of this theoras an immediate consequence of the

proposition3.1 which uses irreducibility and apdidity. The implementations are as follows:

Consider the matriA =[A;] ,.,where A, =1 for all i, jONwith1<i, j<m. This transition matrix

ijd mxm
clearly induces the grap® with m vertices such that there is exactly one and onky edge from

every vertexv; to the vertexy. So, in this case clearly we have that> .Also,A=[A],being
positive is aperiodic and hence it is irreduciblnerefore, by Proposition 3.1g:5 - _is

topologically transitive as well as topologicallyximg.m
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Theorem: 3.3 The seP(o) of all the periodic pointsof : = - = _is denseirg .

Proof: Consider an arbitrary poirt=(x)_, =....... Xogeeene XXy DX X D Z . We need to
show that for any >0, however small, there is a periodic pguii P(o) such that ,(x, p) <&. That

is, for an arbitrarily chosen smalf >0, thes-neighbourhood ofx contains points d?(o).
We note that for fixed >0andp >1, we can always findhON such thap™ <&. Now, for the
arbitrary poinkxdX_, we find a periodic pointpO P(o) satisfying all our requirements mentioned

above. Take the poinh 0% such that

That is, the poinp is constructed by concatenating the fixguh +1) -blockx_, , of the given point

infinitely in both directions. This can always beng for any arbitrary point
Since,x andp agree at least in thgn +1) central block, so by definition of the metdig, we have

d,(x,p)<p " <e. Also, pOz thus constructed is clearly a periodic point andcleg [ P(o) . Thus

for every poinkJX , we always have a poipt] P(g) which is at a distance less than an arbitrarily

chosen small quantigy>0. HenceP(o)is dense ilx_ .m

Theorem: 3.4 The shift maps : %, - %, has sensitive dependence on initial conditions \hid

sensitivity constani =1.
Proof: For simplification of the proof, we first fiyo such thap >2m-1.

Now we show that for ang=1/ p" = p™"(nON)andx = (x )I=>, 0%, there always exists a
point y = (Y, ).~_,, JZ_in the £-neighbourhood of such thak_ ., #y,,,. By proposition 2.7, for

p>2m-1, £=1/p" we always have thatC_  (x_,,....,X,) = B, (x,1/ p").

Supposé\, (X) denotes the-neighbourhood o%. Then, clearly this-neighbourhood is nothing but
the open baIde (x,¢) = B, (x1/ p") .Let,yO B, (x,€) = N(X) with x # y .We claim that it is always
possible to have such a poigtlZ,, such thayB, (x,€). For, if we takey = (¥;);=>, 0, with
Xonng = Yionn @NAX0 # You, then, yOC | (X o0 X) = By, x,1/ p" = By, (x,£). Now, assume that

& >0be arbitrarily small number. In this case we camdfia positive integemN such that
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—(n+1 - — A= (n+1
p "™ <e<p™ If we takeg, =0 "

, then by our argument as before, there exists iat po
y=(¥)ii. 0Zin the & -neighbourhood ok such thak _, ; .. = Yi-n-1.ny @NAX .5 # Yo - Actually
there are infinite number of such points. Hiréx,y) =&, = o™ <e.

o0 00

Again’X = (XI )i=—oo ’ y = (yl )i=—oo D Zm Where x[—n—l,n+1] = y[—n—l,n+l] ’ Xn+2 7 yn+2

= o"(x) £ o™ (y) where (6"(X)), % (0" (Y)),
= d,(0"(x),0"(y)) =L=9)

Thus there exisi¥(=1) such that for any = (X );-_, [l ¥, and any neighbourhoobl(x) of x, there

exists y = (¥, )iz, ON(x) andkONwithd (" (x),c*(y)) =1(= ).

Hence the theorem follovss.

Theorem: 3.5 The shiftmap :5 - 5 Devaney as well as Auslander-Yorke chaotic.

Proof: In the theorem 3.2 we have seen thats topologically transitive, theorem 3.3 showst e

set P(o) of all the periodic points of is dense X and in theorem 3.4 it has been established that
o has sensitive dependence on initial conditions.itSoJlows thato :5 - ¥ is Devaney chaotic
Also, a Devaney chaotianap is always arAuslander-Yorke chaoticHence, o being aDevaney

chaoticmap is als®uslander-Yorke chaotis.

Theorem3.6:The shift map : = - % is generically-chaotic withd = diam(Z ) =1.

Proof: In Theorem 3.2 we have established that the shsformation ¢ on 5 is topologically

mixing. Also, it is a well-known fact that a contious topologically mixing map on a compact metric
space is topologically weak mixing. So, the shifinsformationo being a continuous topologically

mixing map on the compact metric spaceis topologically weak mixing.

Again, since a continuous topologically weak mixmgp on a compact metric spaceis generically

d-chaotic onX with d = diam(X) . Therefore, it follows that the shift transfornwatic on s being a
continuous topologically weak mixing map on the pat metric spac®, is genericallyd-chaotic

withJd = diam(Z,)=1. =
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Theorem: 3.7: The Topological Dynamical System, (,o ) has modified weakly chaotic dependence
on initial conditions.

Proof: A dynamical systengX, f)has modified weakly chaotic dependence on initalditions if for
any xOX and every neighbourhood(x)ofx, there arey,zON(x) withy# x, z#x such that

(y,2)0 X?is Li-Yorke
Lep >2m-1be fixed. Also, letx=(x)~_. 0% _be an arbitrary point andN(x)be any

neighbourhood of. Then there exists an open set (open neighboujhtodof = such that

xOU O N(X).

Now, sincexJU andU is an open set, so, for some langéN there exists an open baB(x, 0 ™")
such thaB(x,0 ") OU ON(X). Also, we note here thB(X, 0 ")is nothing but the symmetric

cylinderC_,  (X_,yeee.- X.). We now findy,ZOON(X) with y # x, z# x such that the paiy,z) 02,

is Li-Yorke We recall that a pair(y,2 022 is Li-Yorke in (= _,o)with moduluss > 0if

lim Supd ,(c"(y),0"(2)) 2 4, lim Inf d (" (y),0"(2)) = 0. Before proving these, we first define some

n- oo n- oo

typical wordsA (x,3n),A(x,5n),A(x,7n) etc. for the simplification of our proof. We definbese

words using the letters = (x)”, 0%, as follows and with the help of these words westmet the

pointsy,zU2 :
AX,2N) = X Xoanerareirannn, Xy X s 1Xarpsgeeessessemeens Xon »
AX,BN) = Xy, Xerapererrereanns Xor Xegrs 1 Xgryspeeereersemeesen X100 s
A XLON) = (X g0y Xigpageeeereerenss X o Xions 1 Xiomsgeseseesernss X, )s ---- @nd so on.

Note that each of the above words containdetters, firsn of which are then-nary complements
of the corresponding letters ikand the rest2n letters are just the letters in the corresponding

positions irx. In all the above words thernary complementx of the letter xis given by

x, =(m-1)-x.,0k, %. Now we take
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And  z= X e X Ky XX X0 A (X,2N0) A (X,BN) A (X LON)A (X14N)..........

With these notations we now prove the theorem kmswe:

Sincey and z agree withxin the (2n +1) -central block, so by definition ofi, we get,
d,(x,y)=p", d,(x2z)=p". Also, since every symmetric cylinder is closed, tiadi B(x, 0™")
being a symmetric cylinder is closed and henez(0B(x, o) OU O N(X).

Here, we note that contains infinitely many words of the typex,2(2k —1)n) ,k ON, containing

4n letters each.

2n+1 —
AlSO, (y) X[—oo n] X[n+12n] D(2n+1 Xonsz+++XgnXansgee-Xan Xgnag - Ko Xgppg oo XonXen+1ee++
i:O

ot — * * * *
(2) = Xy Xins1.20) KanarweeeXanXansg-we-Xon Xonag e----Xgn Xon 1+ -Xgn Xg 1+
——

i=0

5n+l
(Y) = %oy X[n+12n] onag e Xan Xanag e eee Xan Xanageeee Koy Kgpageeeee Ko Xonag e+

5n+1 — * * * *
T (2) = Ko Xnsze e+ Kan X ans 1 ¥ans2 -+ Xon Kanig Xonaz -+« Xen-1Xen Xensa Xens -+
i=0

Here (c'(y)), # (¢**(2)), and ™*'(y) , 0™*(2) agree in(2n—1)-central block.
Therefore, nI:tmsupdp(a“(y),o*"(z)) > Lt d,(a™(y),0""(2)) = Lt1=1
Again, 0< nI:EOiqf d,(a"(y),0"(2)
< Ltd,(o T y).0"(2) = Lt p " =0
Now, 0< nI:tmirlf d,(d"(y),0"(2)<0= nI:tmirlf d,(d"(y),0"(2) =0.

Thus Lt supd,(c"(y),0"(2))21  and nLt irlf d,(o"(y),0"(2) =0.

Hence, (Y, 2) 022 is aLi-Yorkepair with modulusd =1> 0. Consequently, the dynamical system

(Z,,,0 ) has modified weakly chaotic dependence on irgtaditionsm

Theorem: 3.8 The dynamical systefd_,o) has chaotic dependence on initial conditions
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Proof: We first note that a dynamical systgiX, f) has chaotic dependence on initial conditions if

for any xO X and every neighbourhool (x) of x , there is ay[0N(x) such that the paifx, y) 0 X %is
Li-Yorke

Let,a=(a)~_, 0% _be an arbitrary point andN(a) be any neighbourhood af Then there
exists an open set (open neighbourhdaddf = such thaaJU [ N(a). Now, sinceallU andU
is open, so there exists an open Hajl (@, p™") for somen O N such thade (a,p ") 0U ON(a).
Fix p>2m-1so0 thainp (ap™")=C_.(a,,...a,). Now for our purpose we find a very typical
point b0B, (a,0™") DU T N(a) such thaa, b) 022 isLi-Yorke

Using the notations as in Theorem: 3.7 and therketha = (a,a,,a;,.....4,,......)0Z,, we define the
wordsA(@,2n), A(@@en), A@l,....... etc. as follows:

A@z2n) = a; .,

a'2n+2 """ 'a4n X4n+la'4n+2 """ 'a6n !
A (a’6n) = a6n+1a6n+2 """ 'a8na8n+la8n+2 """ 'a:I.On ’

A (a’lm) = aIOn+1aIOn+2 """ 'aIZna12n+la12n+2 """ 'a14n and SO on.

Here we note that each of the above defined wood$ains 4n letters, firsn of which are them-
nary complements of the corresponding lettersairand the rest2n letters are just the letters in

corresponding position af. In all the above words, the1l-nary complementg, ofa, is given by

a, =(m-1) -a,,0k. Now, using the above words we construct the poag follows:

edy @28 ,....8,,A @,2n)A (@,6n)A @10n)A @l4n).........

o

From the construction dfit is clear thato agrees witha in (2n+1)-central block and so we get
d,(ab)=p™". Since B, (@p™")=C_ . (a,....4&,)is closed and ,(a,b) = p™", it follows that

b0 By, (a,0")0OU ON(a).

Here, we see that the poiht contains infinitely many words containingn letters each of the type
A@z22k-1n), kON . Also,

2n+l — * * * * *
T7(0) = &, @ nar2n) Bonsge-BananspeeBsp -8 gnsg -+--BgnBgnsg -
i=0
iz
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5n+1 — * * * *
And g (b) - a[—oo,n]an+l'"'a'4na4n+1""a'5n |]a‘5n+la'5n+2""aBna'Gn+1a6n+2 """
i=0

Here (c"*!(a)), # (¢”""*(b)),and c™**(a), ™**(b) agree in(2n—-1)-central block.

Therefore, Lt supd,(0"(a),0"(b)) 2 Lt d (0" (a),0*" (b)) = Lt 1=1
Again,  0< Ltinfd (0"(a),0"(b))

< Lt dp(0.5n+1(a)’0.5n+l(b)) = Lt p-(n—l) =0

n-oo

Now, 0< Lt infd, (o"(@),0"(b))<0= Ltinfd, (o"(a),0"(b)) =0.
Thus Lt supd,(c"(a),c"(b))21  and nLt irrl]f d,(0"(@),0"(b) =0.

Hence,(a,b) 022 is aLi-Yorkepair with modulusd =1>0. Consequently, the dynamical system

(2,,,0 ) has chaotic dependence on initial conditiens.

4. Zeta functions of the shift mapo :

Let (X, f)be a dynamical system. Fan N , letp,(f)be the number of periodic points of perigd
i.e., p,(f) :HxD X:f'(x) = x}|. Then p,is a topological invariant [1], i.e. the valuesmfare same
for two topologically conjugate dynamical systeffise zeta function of , denoted by, (t), is again

a topological invariant that combines all ffe For the dynamical systefX, f)with p,(f) <o,

NN, the zeta functiog, (t) is defined as:

00 f n
7, (t)= exp{zwt J .

n=1 n

Expanding out the powers of the series gives,
1 1
O =1+ p(DE+ IR+ B+ [2p(1) +3p()P(F) + B(F) L .o
For example, consider the dynamical systeno). The full 2- shiftX,is described by the transition
. 11 . . . 11

matrix A= L J. Let us denote the eigen values 0 2ndf the transition matriA= L J by Aandy

respectively. Then, by Proposition 2.10, we have,

www.iaset.us edit@iaset.us



88 Tarini Kumar Dutta & Anandaram Burhagohain

PG =t (A) =N 44" =0"+2" = 2"

o (5 P enf £ 2 ren( £

n ~
= exp (- log(1- 2t))
1
1-2t

The important key to derive the zeta function & shift map of any finite type shif:
Theorem: 4.1[1]:If A is ar xr nonnegative integer matrixy,(t) its characteristic polynomial and-,

its associated shift maghen

iy=—2t -1 1 , where sp‘(A) is the nonzero spectrum of A
o txa ™) I, —tA| |‘J (L-At)
AOsp”™ (A)

4.2: Derivations of zeta function for the shift mapo on the full m-shiftx :

We know that the fulin-shift = _is described by the non-negative integer margiven by:

1 1 1 .
11 1 .1
A=l1 1 1

11 1 .1

Here to find the zeta function of the shift mapon the fullm-shiftz by fruitfully using the theorem

4.1, we need to computg -tA. We perform this as follows:

-t -t -t -t . -t
-t 1-t -t -t . -t
-t -t 1-t -t . -t
D =[ln —tAl= -t -t -t 1-t . -t
-t -t -t -t .o1-t|
1-mt -t -t -t . -t
1-mt 1-t -t -t . -t
_p-mto-to1-t -t -t (C.=C+C,+C,+..+CL]
1-mt -t -t 1-t .. -t "
1-m -t -t -t . 1-t|_
1-mt -t -t -t . -t
0 1 0 0
| o 0 1 © 0
1o 0 1 0
0 o 0 0 . 1

=(1-mt).l1=1-mt
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1 1 1
UJ t) = = =
<o) Y.t |I,-tA 1-mt

5. Entropy of the full m-shift:

Entropy is a very important and deepencept in dynamics that measures the dynamical
complexity of mappings. Topological entropy is asiiige number assigned to every topological
dynamical system that roughly tells us how muclotha dynamical system is. It generally gives the
exponential rate of growth of the number of orldiistinguishable with finite but arbitrary precision
Metric entropy is closely related to topologicaltrepy which not only measures the dynamical
complexity of mappings, but also plays a very int@ot role in the study of information theory. For
shifts, entropy measures tidormation capacityor transmissibility of message$he entropy of a
shift is an important number invariant under coajtygand behaves well under standard operations
like factor codes and products. For a shift spgdde entropy oK is denoted ab(X) and defined as

h(X) :Lipl%loqsn(xn

Though the concepts &ferron-Frobenius theorepfPerron eigenvalugPerron eigenvectoetc. are
needed for rigorous calculation of entropy of tagptal Markov shifts, we need nothing other than

the definition for the calculation of entropy féwet full m-shift.

For the fullmshift X =X, =Z,.,|B,(X)|=n". So, by simple calculation we have,

)
1 1 1

h(X) = lim=logB, (X)| = lim =logm" = lim =.nlogm=logm>0
naoon naoon nﬁoon

Thus the entropy for the fulh-shift is simplylogm>O0which indicates the dynamical complexity of

the phase spacg, of the topological dynamical systerfi (,o ). =

Conclusions

In this paper we have mainly established the shift transformatioor on the fullm-shift X is
Devaney ChaoticTo do this we have employed the concepts of graptatrix and linear algebra,
topological Markov chains and metric spaces. Inotben 3.4, the well-known chaotic shift
transformation con % _have been shown to be genericalbychaotic withd=diamZ,)=1. In
theorem 3.6 and 3.7, we have proved ihags respectivelynodified weakly chaotic dependersrel

weakly chaotic dependence on initial conditiorsthe proof of both the theorems, Li-Yorke pairs

have been very purposefully constructed. Furthes, zeta function of this transformation has also

www.iaset.us edit@iaset.us



90 Tarini Kumar Dutta & Anandaram Burhagohain

been derived. Simple calculation of entropy for fillé m-shift is given as routine work. The ways of
establishing some results may be fruitfully empbtbyler the same purpose in other topological
Markov chains. Most of the results are quite irdBng and might have profound applications in
advanced analysis, theory of coding, representatibrgeneral dynamical systems and discrete

mathematics.
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